![]() |
MOQ: | 1 Pcs |
Price: | USD 95-450 |
Standard Packaging: | Naked |
Delivery Period: | 8-10 work days |
Payment Method: | L/C,D/P,T/T |
Supply Capacity: | 60000ton/year |
Detachable Steel Bridge/steel Girder Bridge
Automatic welding robots play a crucial role in bridge manufacturing, offering several key advantages:
1. **Precision and Consistency**:
Welding robots can perform tasks with high precision and consistency. They follow pre-programmed paths and maintain uniform welding parameters such as voltage, current, and speed. This ensures that each weld is of high quality and meets the required standards. In bridge manufacturing, where the structural integrity is paramount, this precision helps in creating strong and reliable joints.
2. **Efficiency and Productivity**:
Robots can work continuously without breaks, significantly increasing productivity. They can handle long parts and non-serial products efficiently, reducing the cycle time for each workpiece. This is particularly beneficial in the production of bridge components, where large and complex structures need to be fabricated quickly and accurately.
3. **Adaptability and Flexibility**:
Modern welding robots are equipped with advanced sensors and vision systems that allow them to adapt to different welding tasks and environments. They can detect and track welding seams in real-time, adjusting their paths and parameters accordingly. This flexibility is essential in bridge manufacturing, where various types of joints and complex geometries are common.
4. **Safety and Health**:
Welding robots can operate in potentially hazardous environments, reducing the risk of exposure to harmful fumes, radiation, and physical strain for human workers. This not only improves the working conditions but also helps in maintaining a safer and healthier workplace.
5. **Quality Control**:
With real-time monitoring and feedback systems, welding robots can ensure high-quality welds by detecting and correcting defects during the welding process. This is critical in bridge construction, where the quality of welds directly impacts the safety and longevity of the structure.
Overall, the integration of automatic welding robots in bridge manufacturing enhances the quality, efficiency, and safety of the production process, making them an indispensable tool in modern bridge fabrication.
Specifications:
CB321(100) Truss Press Limited Table | |||||||||
No. | Lnternal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Standard Truss Moment(kN.m) | 788.2 | 1576.4 | 2246.4 | 3265.4 | 1687.5 | 3375 | 4809.4 | 6750 |
321(100) | Standard Truss Shear (kN) | 245.2 | 490.5 | 698.9 | 490.5 | 245.2 | 490.5 | 698.9 | 490.5 |
321 (100) Table of geometric characteristics of truss bridge(Half bridge) | |||||||||
Type No. | Geometric Characteristics | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Section properties(cm3) | 3578.5 | 7157.1 | 10735.6 | 14817.9 | 7699.1 | 15398.3 | 23097.4 | 30641.7 |
321(100) | Moment of inertia(cm4) | 250497.2 | 500994.4 | 751491.6 | 2148588.8 | 577434.4 | 1154868.8 | 1732303.2 | 4596255.2 |
CB200 Truss Press Limited Table | |||||||||
NO. | Internal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | QS | SSR | DSR | TSR | QSR | ||
200 | Standard Truss Moment(kN.m) | 1034.3 | 2027.2 | 2978.8 | 3930.3 | 2165.4 | 4244.2 | 6236.4 | 8228.6 |
200 | Standard Truss Shear (kN) | 222.1 | 435.3 | 639.6 | 843.9 | 222.1 | 435.3 | 639.6 | 843.9 |
201 | High Bending Truss Moment(kN.m) | 1593.2 | 3122.8 | 4585.5 | 6054.3 | 3335.8 | 6538.2 | 9607.1 | 12676.1 |
202 | High Bending Truss Shear(kN) | 348 | 696 | 1044 | 1392 | 348 | 696 | 1044 | 1392 |
203 | Shear Force of Super High Shear Truss(kN) | 509.8 | 999.2 | 1468.2 | 1937.2 | 509.8 | 999.2 | 1468.2 | 1937.2 |
CB200 Table of Geometric Characteristics of Truss Bridge(Half Bridge) | ||||
Structure | Geometric Characteristics | |||
Geometric Characteristics | Chord Area(cm2) | Section Properties(cm3) | Moment of Inertia(cm4) | |
ss | SS | 25.48 | 5437 | 580174 |
SSR | 50.96 | 10875 | 1160348 | |
DS | DS | 50.96 | 10875 | 1160348 |
DSR1 | 76.44 | 16312 | 1740522 | |
DSR2 | 101.92 | 21750 | 2320696 | |
TS | TS | 76.44 | 16312 | 1740522 |
TSR2 | 127.4 | 27185 | 2900870 | |
TSR3 | 152.88 | 32625 | 3481044 | |
QS | QS | 101.92 | 21750 | 2320696 |
QSR3 | 178.36 | 38059 | 4061218 | |
QSR4 | 203.84 | 43500 | 4641392 |
Advantage
Possessing the features of simple structure,
convenient transport, speedy erection
easy disassembling,
heavy loading capacity,
great stability and long fatigue life
being capable of an alternative span, loading capacity
![]() |
MOQ: | 1 Pcs |
Price: | USD 95-450 |
Standard Packaging: | Naked |
Delivery Period: | 8-10 work days |
Payment Method: | L/C,D/P,T/T |
Supply Capacity: | 60000ton/year |
Detachable Steel Bridge/steel Girder Bridge
Automatic welding robots play a crucial role in bridge manufacturing, offering several key advantages:
1. **Precision and Consistency**:
Welding robots can perform tasks with high precision and consistency. They follow pre-programmed paths and maintain uniform welding parameters such as voltage, current, and speed. This ensures that each weld is of high quality and meets the required standards. In bridge manufacturing, where the structural integrity is paramount, this precision helps in creating strong and reliable joints.
2. **Efficiency and Productivity**:
Robots can work continuously without breaks, significantly increasing productivity. They can handle long parts and non-serial products efficiently, reducing the cycle time for each workpiece. This is particularly beneficial in the production of bridge components, where large and complex structures need to be fabricated quickly and accurately.
3. **Adaptability and Flexibility**:
Modern welding robots are equipped with advanced sensors and vision systems that allow them to adapt to different welding tasks and environments. They can detect and track welding seams in real-time, adjusting their paths and parameters accordingly. This flexibility is essential in bridge manufacturing, where various types of joints and complex geometries are common.
4. **Safety and Health**:
Welding robots can operate in potentially hazardous environments, reducing the risk of exposure to harmful fumes, radiation, and physical strain for human workers. This not only improves the working conditions but also helps in maintaining a safer and healthier workplace.
5. **Quality Control**:
With real-time monitoring and feedback systems, welding robots can ensure high-quality welds by detecting and correcting defects during the welding process. This is critical in bridge construction, where the quality of welds directly impacts the safety and longevity of the structure.
Overall, the integration of automatic welding robots in bridge manufacturing enhances the quality, efficiency, and safety of the production process, making them an indispensable tool in modern bridge fabrication.
Specifications:
CB321(100) Truss Press Limited Table | |||||||||
No. | Lnternal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Standard Truss Moment(kN.m) | 788.2 | 1576.4 | 2246.4 | 3265.4 | 1687.5 | 3375 | 4809.4 | 6750 |
321(100) | Standard Truss Shear (kN) | 245.2 | 490.5 | 698.9 | 490.5 | 245.2 | 490.5 | 698.9 | 490.5 |
321 (100) Table of geometric characteristics of truss bridge(Half bridge) | |||||||||
Type No. | Geometric Characteristics | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Section properties(cm3) | 3578.5 | 7157.1 | 10735.6 | 14817.9 | 7699.1 | 15398.3 | 23097.4 | 30641.7 |
321(100) | Moment of inertia(cm4) | 250497.2 | 500994.4 | 751491.6 | 2148588.8 | 577434.4 | 1154868.8 | 1732303.2 | 4596255.2 |
CB200 Truss Press Limited Table | |||||||||
NO. | Internal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | QS | SSR | DSR | TSR | QSR | ||
200 | Standard Truss Moment(kN.m) | 1034.3 | 2027.2 | 2978.8 | 3930.3 | 2165.4 | 4244.2 | 6236.4 | 8228.6 |
200 | Standard Truss Shear (kN) | 222.1 | 435.3 | 639.6 | 843.9 | 222.1 | 435.3 | 639.6 | 843.9 |
201 | High Bending Truss Moment(kN.m) | 1593.2 | 3122.8 | 4585.5 | 6054.3 | 3335.8 | 6538.2 | 9607.1 | 12676.1 |
202 | High Bending Truss Shear(kN) | 348 | 696 | 1044 | 1392 | 348 | 696 | 1044 | 1392 |
203 | Shear Force of Super High Shear Truss(kN) | 509.8 | 999.2 | 1468.2 | 1937.2 | 509.8 | 999.2 | 1468.2 | 1937.2 |
CB200 Table of Geometric Characteristics of Truss Bridge(Half Bridge) | ||||
Structure | Geometric Characteristics | |||
Geometric Characteristics | Chord Area(cm2) | Section Properties(cm3) | Moment of Inertia(cm4) | |
ss | SS | 25.48 | 5437 | 580174 |
SSR | 50.96 | 10875 | 1160348 | |
DS | DS | 50.96 | 10875 | 1160348 |
DSR1 | 76.44 | 16312 | 1740522 | |
DSR2 | 101.92 | 21750 | 2320696 | |
TS | TS | 76.44 | 16312 | 1740522 |
TSR2 | 127.4 | 27185 | 2900870 | |
TSR3 | 152.88 | 32625 | 3481044 | |
QS | QS | 101.92 | 21750 | 2320696 |
QSR3 | 178.36 | 38059 | 4061218 | |
QSR4 | 203.84 | 43500 | 4641392 |
Advantage
Possessing the features of simple structure,
convenient transport, speedy erection
easy disassembling,
heavy loading capacity,
great stability and long fatigue life
being capable of an alternative span, loading capacity