![]() |
MOQ: | 1 Pcs |
Price: | USD 95-450 |
Standard Packaging: | Naked |
Delivery Period: | 8-10 work days |
Payment Method: | L/C,D/P,T/T |
Supply Capacity: | 60000ton/year |
Various Span Steel Bridge/small Steel Bridges
If you spot rust on a bridge, it is important to take prompt action to prevent further corrosion and ensure the structural integrity of the bridge. Here are the steps you should consider:
1. **Report the Rust**
- **Contact the Bridge Maintenance Authority**: If you are not responsible for the bridge’s maintenance, immediately report the rust to the local transportation department, bridge maintenance team, or the relevant authority. Provide details about the location and extent of the rust.
2. **Initial Assessment**
- **Inspect the Rust**: Determine the extent and severity of the rust. Check if it is localized or widespread, and whether it affects critical structural components.
3. **Rust Removal Methods**
- **Mechanical Removal**: Use tools like steel wool, a wire brush, or a power grinder to remove surface rust. This method is effective for larger areas.
- **Chemical Removal**: Apply rust-removing solutions such as a mixture of baking soda and lemon juice, or citric acid powder mixed with water. These solutions can help dissolve rust and are less abrasive than mechanical methods.
- **Electrolysis**: For more severe rust, consider using an electrolysis setup to remove rust from metal objects. This method involves submerging the rusted object in a solution and using a sacrificial anode to attract the rust.
4. **Protective Measures**
- **Coating and Painting**: After removing the rust, apply a protective coating or paint to prevent future corrosion. Use corrosion inhibitors or galvanized coatings for long-term protection.
- **Regular Maintenance**: Ensure that the bridge is regularly inspected and cleaned to prevent the accumulation of debris and moisture, which can lead to rust.
5. **Professional Help**
- **Consult Experts**: For large-scale or severe rust issues, it is advisable to consult professional bridge maintenance engineers or corrosion experts. They can provide specialized treatments and long-term solutions.
By taking these steps, you can effectively address rust on bridges and help maintain their durability and safety.
Specifications:
CB321(100) Truss Press Limited Table | |||||||||
No. | Lnternal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Standard Truss Moment(kN.m) | 788.2 | 1576.4 | 2246.4 | 3265.4 | 1687.5 | 3375 | 4809.4 | 6750 |
321(100) | Standard Truss Shear (kN) | 245.2 | 490.5 | 698.9 | 490.5 | 245.2 | 490.5 | 698.9 | 490.5 |
321 (100) Table of geometric characteristics of truss bridge(Half bridge) | |||||||||
Type No. | Geometric Characteristics | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Section properties(cm3) | 3578.5 | 7157.1 | 10735.6 | 14817.9 | 7699.1 | 15398.3 | 23097.4 | 30641.7 |
321(100) | Moment of inertia(cm4) | 250497.2 | 500994.4 | 751491.6 | 2148588.8 | 577434.4 | 1154868.8 | 1732303.2 | 4596255.2 |
CB200 Truss Press Limited Table | |||||||||
NO. | Internal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | QS | SSR | DSR | TSR | QSR | ||
200 | Standard Truss Moment(kN.m) | 1034.3 | 2027.2 | 2978.8 | 3930.3 | 2165.4 | 4244.2 | 6236.4 | 8228.6 |
200 | Standard Truss Shear (kN) | 222.1 | 435.3 | 639.6 | 843.9 | 222.1 | 435.3 | 639.6 | 843.9 |
201 | High Bending Truss Moment(kN.m) | 1593.2 | 3122.8 | 4585.5 | 6054.3 | 3335.8 | 6538.2 | 9607.1 | 12676.1 |
202 | High Bending Truss Shear(kN) | 348 | 696 | 1044 | 1392 | 348 | 696 | 1044 | 1392 |
203 | Shear Force of Super High Shear Truss(kN) | 509.8 | 999.2 | 1468.2 | 1937.2 | 509.8 | 999.2 | 1468.2 | 1937.2 |
CB200 Table of Geometric Characteristics of Truss Bridge(Half Bridge) | ||||
Structure | Geometric Characteristics | |||
Geometric Characteristics | Chord Area(cm2) | Section Properties(cm3) | Moment of Inertia(cm4) | |
ss | SS | 25.48 | 5437 | 580174 |
SSR | 50.96 | 10875 | 1160348 | |
DS | DS | 50.96 | 10875 | 1160348 |
DSR1 | 76.44 | 16312 | 1740522 | |
DSR2 | 101.92 | 21750 | 2320696 | |
TS | TS | 76.44 | 16312 | 1740522 |
TSR2 | 127.4 | 27185 | 2900870 | |
TSR3 | 152.88 | 32625 | 3481044 | |
QS | QS | 101.92 | 21750 | 2320696 |
QSR3 | 178.36 | 38059 | 4061218 | |
QSR4 | 203.84 | 43500 | 4641392 |
Advantage
Possessing the features of simple structure,
convenient transport, speedy erection
easy disassembling,
heavy loading capacity,
great stability and long fatigue life
being capable of an alternative span, loading capacity
![]() |
MOQ: | 1 Pcs |
Price: | USD 95-450 |
Standard Packaging: | Naked |
Delivery Period: | 8-10 work days |
Payment Method: | L/C,D/P,T/T |
Supply Capacity: | 60000ton/year |
Various Span Steel Bridge/small Steel Bridges
If you spot rust on a bridge, it is important to take prompt action to prevent further corrosion and ensure the structural integrity of the bridge. Here are the steps you should consider:
1. **Report the Rust**
- **Contact the Bridge Maintenance Authority**: If you are not responsible for the bridge’s maintenance, immediately report the rust to the local transportation department, bridge maintenance team, or the relevant authority. Provide details about the location and extent of the rust.
2. **Initial Assessment**
- **Inspect the Rust**: Determine the extent and severity of the rust. Check if it is localized or widespread, and whether it affects critical structural components.
3. **Rust Removal Methods**
- **Mechanical Removal**: Use tools like steel wool, a wire brush, or a power grinder to remove surface rust. This method is effective for larger areas.
- **Chemical Removal**: Apply rust-removing solutions such as a mixture of baking soda and lemon juice, or citric acid powder mixed with water. These solutions can help dissolve rust and are less abrasive than mechanical methods.
- **Electrolysis**: For more severe rust, consider using an electrolysis setup to remove rust from metal objects. This method involves submerging the rusted object in a solution and using a sacrificial anode to attract the rust.
4. **Protective Measures**
- **Coating and Painting**: After removing the rust, apply a protective coating or paint to prevent future corrosion. Use corrosion inhibitors or galvanized coatings for long-term protection.
- **Regular Maintenance**: Ensure that the bridge is regularly inspected and cleaned to prevent the accumulation of debris and moisture, which can lead to rust.
5. **Professional Help**
- **Consult Experts**: For large-scale or severe rust issues, it is advisable to consult professional bridge maintenance engineers or corrosion experts. They can provide specialized treatments and long-term solutions.
By taking these steps, you can effectively address rust on bridges and help maintain their durability and safety.
Specifications:
CB321(100) Truss Press Limited Table | |||||||||
No. | Lnternal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Standard Truss Moment(kN.m) | 788.2 | 1576.4 | 2246.4 | 3265.4 | 1687.5 | 3375 | 4809.4 | 6750 |
321(100) | Standard Truss Shear (kN) | 245.2 | 490.5 | 698.9 | 490.5 | 245.2 | 490.5 | 698.9 | 490.5 |
321 (100) Table of geometric characteristics of truss bridge(Half bridge) | |||||||||
Type No. | Geometric Characteristics | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Section properties(cm3) | 3578.5 | 7157.1 | 10735.6 | 14817.9 | 7699.1 | 15398.3 | 23097.4 | 30641.7 |
321(100) | Moment of inertia(cm4) | 250497.2 | 500994.4 | 751491.6 | 2148588.8 | 577434.4 | 1154868.8 | 1732303.2 | 4596255.2 |
CB200 Truss Press Limited Table | |||||||||
NO. | Internal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | QS | SSR | DSR | TSR | QSR | ||
200 | Standard Truss Moment(kN.m) | 1034.3 | 2027.2 | 2978.8 | 3930.3 | 2165.4 | 4244.2 | 6236.4 | 8228.6 |
200 | Standard Truss Shear (kN) | 222.1 | 435.3 | 639.6 | 843.9 | 222.1 | 435.3 | 639.6 | 843.9 |
201 | High Bending Truss Moment(kN.m) | 1593.2 | 3122.8 | 4585.5 | 6054.3 | 3335.8 | 6538.2 | 9607.1 | 12676.1 |
202 | High Bending Truss Shear(kN) | 348 | 696 | 1044 | 1392 | 348 | 696 | 1044 | 1392 |
203 | Shear Force of Super High Shear Truss(kN) | 509.8 | 999.2 | 1468.2 | 1937.2 | 509.8 | 999.2 | 1468.2 | 1937.2 |
CB200 Table of Geometric Characteristics of Truss Bridge(Half Bridge) | ||||
Structure | Geometric Characteristics | |||
Geometric Characteristics | Chord Area(cm2) | Section Properties(cm3) | Moment of Inertia(cm4) | |
ss | SS | 25.48 | 5437 | 580174 |
SSR | 50.96 | 10875 | 1160348 | |
DS | DS | 50.96 | 10875 | 1160348 |
DSR1 | 76.44 | 16312 | 1740522 | |
DSR2 | 101.92 | 21750 | 2320696 | |
TS | TS | 76.44 | 16312 | 1740522 |
TSR2 | 127.4 | 27185 | 2900870 | |
TSR3 | 152.88 | 32625 | 3481044 | |
QS | QS | 101.92 | 21750 | 2320696 |
QSR3 | 178.36 | 38059 | 4061218 | |
QSR4 | 203.84 | 43500 | 4641392 |
Advantage
Possessing the features of simple structure,
convenient transport, speedy erection
easy disassembling,
heavy loading capacity,
great stability and long fatigue life
being capable of an alternative span, loading capacity