![]() |
MOQ: | 1 Pcs |
Price: | USD 95-450 |
Standard Packaging: | Naked |
Delivery Period: | 8-10 work days |
Payment Method: | L/C,D/P,T/T |
Supply Capacity: | 60000ton/year |
Steel Military Bridge/steel Pedestrian Bridge
Prefabrication significantly enhances the lifespan of steel bridges through several key mechanisms:
1. **Enhanced Quality Control**:
Prefabricated steel bridge components are manufactured in a controlled factory environment, allowing for precise quality control. Each component undergoes rigorous testing and inspection before assembly, reducing the likelihood of defects and ensuring structural integrity.
2. **Durability and Corrosion Resistance**:
Steel is inherently strong and durable, and prefabrication allows for the application of advanced protective coatings and treatments. These coatings, such as galvanization or specialized paints, protect the steel from environmental factors like moisture and corrosive agents, extending the bridge’s lifespan.
3. **Reduced On-site Exposure**:
Traditional construction methods expose materials to harsh environmental conditions for extended periods. Prefabrication minimizes this exposure, as components are assembled quickly on-site, reducing the risk of weather-related damage.
4. **Efficient Maintenance**:
Prefabricated bridges often incorporate modular designs that simplify maintenance and repairs. Components can be easily replaced or repaired without extensive disruption, ensuring the bridge remains in optimal condition.
5. **Long-term Cost Savings**:
While initial costs may be higher due to prefabrication technology, the long-term benefits of reduced maintenance and extended lifespan make prefabricated steel bridges a cost-effective choice. Their durability means fewer repairs and replacements over time.
Overall, prefabrication not only speeds up construction and reduces costs but also enhances the durability and longevity of steel bridges, making them a reliable choice for modern infrastructure projects.
Specifications:
CB200 Truss Press Limited Table | |||||||||
NO. | Internal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | QS | SSR | DSR | TSR | QSR | ||
200 | Standard Truss Moment(kN.m) | 1034.3 | 2027.2 | 2978.8 | 3930.3 | 2165.4 | 4244.2 | 6236.4 | 8228.6 |
200 | Standard Truss Shear (kN) | 222.1 | 435.3 | 639.6 | 843.9 | 222.1 | 435.3 | 639.6 | 843.9 |
201 | High Bending Truss Moment(kN.m) | 1593.2 | 3122.8 | 4585.5 | 6054.3 | 3335.8 | 6538.2 | 9607.1 | 12676.1 |
202 | High Bending Truss Shear(kN) | 348 | 696 | 1044 | 1392 | 348 | 696 | 1044 | 1392 |
203 | Shear Force of Super High Shear Truss(kN) | 509.8 | 999.2 | 1468.2 | 1937.2 | 509.8 | 999.2 | 1468.2 | 1937.2 |
CB200 Table of Geometric Characteristics of Truss Bridge(Half Bridge) | ||||
Structure | Geometric Characteristics | |||
Geometric Characteristics | Chord Area(cm2) | Section Properties(cm3) | Moment of Inertia(cm4) | |
ss | SS | 25.48 | 5437 | 580174 |
SSR | 50.96 | 10875 | 1160348 | |
DS | DS | 50.96 | 10875 | 1160348 |
DSR1 | 76.44 | 16312 | 1740522 | |
DSR2 | 101.92 | 21750 | 2320696 | |
TS | TS | 76.44 | 16312 | 1740522 |
TSR2 | 127.4 | 27185 | 2900870 | |
TSR3 | 152.88 | 32625 | 3481044 | |
QS | QS | 101.92 | 21750 | 2320696 |
QSR3 | 178.36 | 38059 | 4061218 | |
QSR4 | 203.84 | 43500 | 4641392 |
CB321(100) Truss Press Limited Table | |||||||||
No. | Lnternal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Standard Truss Moment(kN.m) | 788.2 | 1576.4 | 2246.4 | 3265.4 | 1687.5 | 3375 | 4809.4 | 6750 |
321(100) | Standard Truss Shear (kN) | 245.2 | 490.5 | 698.9 | 490.5 | 245.2 | 490.5 | 698.9 | 490.5 |
321 (100) Table of geometric characteristics of truss bridge(Half bridge) | |||||||||
Type No. | Geometric Characteristics | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Section properties(cm3) | 3578.5 | 7157.1 | 10735.6 | 14817.9 | 7699.1 | 15398.3 | 23097.4 | 30641.7 |
321(100) | Moment of inertia(cm4) | 250497.2 | 500994.4 | 751491.6 | 2148588.8 | 577434.4 | 1154868.8 | 1732303.2 | 4596255.2 |
Advantage
Possessing the features of simple structure,
convenient transport, speedy erection
easy disassembling,
heavy loading capacity,
great stability and long fatigue life
being capable of an alternative span, loading capacity
![]() |
MOQ: | 1 Pcs |
Price: | USD 95-450 |
Standard Packaging: | Naked |
Delivery Period: | 8-10 work days |
Payment Method: | L/C,D/P,T/T |
Supply Capacity: | 60000ton/year |
Steel Military Bridge/steel Pedestrian Bridge
Prefabrication significantly enhances the lifespan of steel bridges through several key mechanisms:
1. **Enhanced Quality Control**:
Prefabricated steel bridge components are manufactured in a controlled factory environment, allowing for precise quality control. Each component undergoes rigorous testing and inspection before assembly, reducing the likelihood of defects and ensuring structural integrity.
2. **Durability and Corrosion Resistance**:
Steel is inherently strong and durable, and prefabrication allows for the application of advanced protective coatings and treatments. These coatings, such as galvanization or specialized paints, protect the steel from environmental factors like moisture and corrosive agents, extending the bridge’s lifespan.
3. **Reduced On-site Exposure**:
Traditional construction methods expose materials to harsh environmental conditions for extended periods. Prefabrication minimizes this exposure, as components are assembled quickly on-site, reducing the risk of weather-related damage.
4. **Efficient Maintenance**:
Prefabricated bridges often incorporate modular designs that simplify maintenance and repairs. Components can be easily replaced or repaired without extensive disruption, ensuring the bridge remains in optimal condition.
5. **Long-term Cost Savings**:
While initial costs may be higher due to prefabrication technology, the long-term benefits of reduced maintenance and extended lifespan make prefabricated steel bridges a cost-effective choice. Their durability means fewer repairs and replacements over time.
Overall, prefabrication not only speeds up construction and reduces costs but also enhances the durability and longevity of steel bridges, making them a reliable choice for modern infrastructure projects.
Specifications:
CB200 Truss Press Limited Table | |||||||||
NO. | Internal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | QS | SSR | DSR | TSR | QSR | ||
200 | Standard Truss Moment(kN.m) | 1034.3 | 2027.2 | 2978.8 | 3930.3 | 2165.4 | 4244.2 | 6236.4 | 8228.6 |
200 | Standard Truss Shear (kN) | 222.1 | 435.3 | 639.6 | 843.9 | 222.1 | 435.3 | 639.6 | 843.9 |
201 | High Bending Truss Moment(kN.m) | 1593.2 | 3122.8 | 4585.5 | 6054.3 | 3335.8 | 6538.2 | 9607.1 | 12676.1 |
202 | High Bending Truss Shear(kN) | 348 | 696 | 1044 | 1392 | 348 | 696 | 1044 | 1392 |
203 | Shear Force of Super High Shear Truss(kN) | 509.8 | 999.2 | 1468.2 | 1937.2 | 509.8 | 999.2 | 1468.2 | 1937.2 |
CB200 Table of Geometric Characteristics of Truss Bridge(Half Bridge) | ||||
Structure | Geometric Characteristics | |||
Geometric Characteristics | Chord Area(cm2) | Section Properties(cm3) | Moment of Inertia(cm4) | |
ss | SS | 25.48 | 5437 | 580174 |
SSR | 50.96 | 10875 | 1160348 | |
DS | DS | 50.96 | 10875 | 1160348 |
DSR1 | 76.44 | 16312 | 1740522 | |
DSR2 | 101.92 | 21750 | 2320696 | |
TS | TS | 76.44 | 16312 | 1740522 |
TSR2 | 127.4 | 27185 | 2900870 | |
TSR3 | 152.88 | 32625 | 3481044 | |
QS | QS | 101.92 | 21750 | 2320696 |
QSR3 | 178.36 | 38059 | 4061218 | |
QSR4 | 203.84 | 43500 | 4641392 |
CB321(100) Truss Press Limited Table | |||||||||
No. | Lnternal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Standard Truss Moment(kN.m) | 788.2 | 1576.4 | 2246.4 | 3265.4 | 1687.5 | 3375 | 4809.4 | 6750 |
321(100) | Standard Truss Shear (kN) | 245.2 | 490.5 | 698.9 | 490.5 | 245.2 | 490.5 | 698.9 | 490.5 |
321 (100) Table of geometric characteristics of truss bridge(Half bridge) | |||||||||
Type No. | Geometric Characteristics | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Section properties(cm3) | 3578.5 | 7157.1 | 10735.6 | 14817.9 | 7699.1 | 15398.3 | 23097.4 | 30641.7 |
321(100) | Moment of inertia(cm4) | 250497.2 | 500994.4 | 751491.6 | 2148588.8 | 577434.4 | 1154868.8 | 1732303.2 | 4596255.2 |
Advantage
Possessing the features of simple structure,
convenient transport, speedy erection
easy disassembling,
heavy loading capacity,
great stability and long fatigue life
being capable of an alternative span, loading capacity