![]() |
MOQ: | 1 Pcs |
Price: | USD 95-450 |
Standard Packaging: | Naked |
Delivery Period: | 8-10 work days |
Payment Method: | L/C,D/P,T/T |
Supply Capacity: | 60000ton/year |
Steel Panel Bridge/temporary Steel Panel Bridge
Using zinc-rich primer coatings on steel bridges offers several significant benefits that enhance durability, reduce maintenance, and provide long-term protection against corrosion:
1. **Cathodic Protection**
Zinc-rich primers provide cathodic protection due to their high zinc content (typically 60-90%). Zinc acts as a sacrificial anode, corroding preferentially over the steel. This means that even if the coating is breached, the underlying steel remains protected from corrosion.
2. **Barrier Protection**
The epoxy resin in zinc-rich primers forms a tight, impermeable barrier over the steel surface. This barrier physically blocks water, oxygen, and other corrosive elements from reaching the steel, significantly reducing the risk of rust and corrosion.
3. **Long-Term Durability**
Zinc-rich primers offer long-term protection by combining both cathodic and barrier protection mechanisms. This dual protection extends the lifespan of steel structures, reducing the need for frequent maintenance and replacements.
4. **Versatility and Adaptability**
These primers are highly versatile and can be used in a wide range of environments, from marine settings to industrial facilities. They are particularly effective in harsh conditions where steel is exposed to salt spray, high humidity, and industrial chemicals.
5. **Cost-Effectiveness**
By prolonging the lifespan of steel structures and reducing maintenance needs, zinc-rich primers offer substantial cost savings over time. The initial investment in high-quality coatings pays off through reduced maintenance and longer service life.
6. **Reduced Maintenance**
Zinc-rich primers continue to protect the steel even if the topcoat is breached, making them a superior choice for long-term corrosion resistance. This reduces the frequency of maintenance and the associated costs.
7. **Chemical Resistance**
The epoxy resin component in zinc-rich primers provides additional chemical resistance, further aiding in preventing rust-inducing reactions with other chemicals.
8. **Self-Healing Properties**
Some advanced zinc-rich primers incorporate conductive polymers or other additives that enhance their self-healing properties. These materials can rebuild the protective layer if it is damaged, ensuring continuous protection.
Conclusion
Zinc-rich primer coatings are a highly effective solution for protecting steel bridges from corrosion. Their combination of cathodic and barrier protection, long-term durability, and cost-effectiveness make them an ideal choice for ensuring the longevity and reliability of steel structures.
Specifications:
CB200 Truss Press Limited Table | |||||||||
NO. | Internal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | QS | SSR | DSR | TSR | QSR | ||
200 | Standard Truss Moment(kN.m) | 1034.3 | 2027.2 | 2978.8 | 3930.3 | 2165.4 | 4244.2 | 6236.4 | 8228.6 |
200 | Standard Truss Shear (kN) | 222.1 | 435.3 | 639.6 | 843.9 | 222.1 | 435.3 | 639.6 | 843.9 |
201 | High Bending Truss Moment(kN.m) | 1593.2 | 3122.8 | 4585.5 | 6054.3 | 3335.8 | 6538.2 | 9607.1 | 12676.1 |
202 | High Bending Truss Shear(kN) | 348 | 696 | 1044 | 1392 | 348 | 696 | 1044 | 1392 |
203 | Shear Force of Super High Shear Truss(kN) | 509.8 | 999.2 | 1468.2 | 1937.2 | 509.8 | 999.2 | 1468.2 | 1937.2 |
CB200 Table of Geometric Characteristics of Truss Bridge(Half Bridge) | ||||
Structure | Geometric Characteristics | |||
Geometric Characteristics | Chord Area(cm2) | Section Properties(cm3) | Moment of Inertia(cm4) | |
ss | SS | 25.48 | 5437 | 580174 |
SSR | 50.96 | 10875 | 1160348 | |
DS | DS | 50.96 | 10875 | 1160348 |
DSR1 | 76.44 | 16312 | 1740522 | |
DSR2 | 101.92 | 21750 | 2320696 | |
TS | TS | 76.44 | 16312 | 1740522 |
TSR2 | 127.4 | 27185 | 2900870 | |
TSR3 | 152.88 | 32625 | 3481044 | |
QS | QS | 101.92 | 21750 | 2320696 |
QSR3 | 178.36 | 38059 | 4061218 | |
QSR4 | 203.84 | 43500 | 4641392 |
CB321(100) Truss Press Limited Table | |||||||||
No. | Lnternal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Standard Truss Moment(kN.m) | 788.2 | 1576.4 | 2246.4 | 3265.4 | 1687.5 | 3375 | 4809.4 | 6750 |
321(100) | Standard Truss Shear (kN) | 245.2 | 490.5 | 698.9 | 490.5 | 245.2 | 490.5 | 698.9 | 490.5 |
321 (100) Table of geometric characteristics of truss bridge(Half bridge) | |||||||||
Type No. | Geometric Characteristics | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Section properties(cm3) | 3578.5 | 7157.1 | 10735.6 | 14817.9 | 7699.1 | 15398.3 | 23097.4 | 30641.7 |
321(100) | Moment of inertia(cm4) | 250497.2 | 500994.4 | 751491.6 | 2148588.8 | 577434.4 | 1154868.8 | 1732303.2 | 4596255.2 |
Advantage
Possessing the features of simple structure,
convenient transport, speedy erection
easy disassembling,
heavy loading capacity,
great stability and long fatigue life
being capable of an alternative span, loading capacity
![]() |
MOQ: | 1 Pcs |
Price: | USD 95-450 |
Standard Packaging: | Naked |
Delivery Period: | 8-10 work days |
Payment Method: | L/C,D/P,T/T |
Supply Capacity: | 60000ton/year |
Steel Panel Bridge/temporary Steel Panel Bridge
Using zinc-rich primer coatings on steel bridges offers several significant benefits that enhance durability, reduce maintenance, and provide long-term protection against corrosion:
1. **Cathodic Protection**
Zinc-rich primers provide cathodic protection due to their high zinc content (typically 60-90%). Zinc acts as a sacrificial anode, corroding preferentially over the steel. This means that even if the coating is breached, the underlying steel remains protected from corrosion.
2. **Barrier Protection**
The epoxy resin in zinc-rich primers forms a tight, impermeable barrier over the steel surface. This barrier physically blocks water, oxygen, and other corrosive elements from reaching the steel, significantly reducing the risk of rust and corrosion.
3. **Long-Term Durability**
Zinc-rich primers offer long-term protection by combining both cathodic and barrier protection mechanisms. This dual protection extends the lifespan of steel structures, reducing the need for frequent maintenance and replacements.
4. **Versatility and Adaptability**
These primers are highly versatile and can be used in a wide range of environments, from marine settings to industrial facilities. They are particularly effective in harsh conditions where steel is exposed to salt spray, high humidity, and industrial chemicals.
5. **Cost-Effectiveness**
By prolonging the lifespan of steel structures and reducing maintenance needs, zinc-rich primers offer substantial cost savings over time. The initial investment in high-quality coatings pays off through reduced maintenance and longer service life.
6. **Reduced Maintenance**
Zinc-rich primers continue to protect the steel even if the topcoat is breached, making them a superior choice for long-term corrosion resistance. This reduces the frequency of maintenance and the associated costs.
7. **Chemical Resistance**
The epoxy resin component in zinc-rich primers provides additional chemical resistance, further aiding in preventing rust-inducing reactions with other chemicals.
8. **Self-Healing Properties**
Some advanced zinc-rich primers incorporate conductive polymers or other additives that enhance their self-healing properties. These materials can rebuild the protective layer if it is damaged, ensuring continuous protection.
Conclusion
Zinc-rich primer coatings are a highly effective solution for protecting steel bridges from corrosion. Their combination of cathodic and barrier protection, long-term durability, and cost-effectiveness make them an ideal choice for ensuring the longevity and reliability of steel structures.
Specifications:
CB200 Truss Press Limited Table | |||||||||
NO. | Internal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | QS | SSR | DSR | TSR | QSR | ||
200 | Standard Truss Moment(kN.m) | 1034.3 | 2027.2 | 2978.8 | 3930.3 | 2165.4 | 4244.2 | 6236.4 | 8228.6 |
200 | Standard Truss Shear (kN) | 222.1 | 435.3 | 639.6 | 843.9 | 222.1 | 435.3 | 639.6 | 843.9 |
201 | High Bending Truss Moment(kN.m) | 1593.2 | 3122.8 | 4585.5 | 6054.3 | 3335.8 | 6538.2 | 9607.1 | 12676.1 |
202 | High Bending Truss Shear(kN) | 348 | 696 | 1044 | 1392 | 348 | 696 | 1044 | 1392 |
203 | Shear Force of Super High Shear Truss(kN) | 509.8 | 999.2 | 1468.2 | 1937.2 | 509.8 | 999.2 | 1468.2 | 1937.2 |
CB200 Table of Geometric Characteristics of Truss Bridge(Half Bridge) | ||||
Structure | Geometric Characteristics | |||
Geometric Characteristics | Chord Area(cm2) | Section Properties(cm3) | Moment of Inertia(cm4) | |
ss | SS | 25.48 | 5437 | 580174 |
SSR | 50.96 | 10875 | 1160348 | |
DS | DS | 50.96 | 10875 | 1160348 |
DSR1 | 76.44 | 16312 | 1740522 | |
DSR2 | 101.92 | 21750 | 2320696 | |
TS | TS | 76.44 | 16312 | 1740522 |
TSR2 | 127.4 | 27185 | 2900870 | |
TSR3 | 152.88 | 32625 | 3481044 | |
QS | QS | 101.92 | 21750 | 2320696 |
QSR3 | 178.36 | 38059 | 4061218 | |
QSR4 | 203.84 | 43500 | 4641392 |
CB321(100) Truss Press Limited Table | |||||||||
No. | Lnternal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Standard Truss Moment(kN.m) | 788.2 | 1576.4 | 2246.4 | 3265.4 | 1687.5 | 3375 | 4809.4 | 6750 |
321(100) | Standard Truss Shear (kN) | 245.2 | 490.5 | 698.9 | 490.5 | 245.2 | 490.5 | 698.9 | 490.5 |
321 (100) Table of geometric characteristics of truss bridge(Half bridge) | |||||||||
Type No. | Geometric Characteristics | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Section properties(cm3) | 3578.5 | 7157.1 | 10735.6 | 14817.9 | 7699.1 | 15398.3 | 23097.4 | 30641.7 |
321(100) | Moment of inertia(cm4) | 250497.2 | 500994.4 | 751491.6 | 2148588.8 | 577434.4 | 1154868.8 | 1732303.2 | 4596255.2 |
Advantage
Possessing the features of simple structure,
convenient transport, speedy erection
easy disassembling,
heavy loading capacity,
great stability and long fatigue life
being capable of an alternative span, loading capacity