![]() |
MOQ: | 1 Pcs |
Price: | USD 95-450 |
Standard Packaging: | Naked |
Delivery Period: | 8-10 work days |
Payment Method: | L/C,D/P,T/T |
Supply Capacity: | 60000ton/year |
Prefabricated Steel Portable Bridge/panel Steel Bridge
Double-webbed members in Bailey bridges serve several critical functions that enhance the bridge's load-carrying capacity and structural integrity. These members are essentially two panel girders connected together to form a stronger, double-width truss. Here are the main purposes of double-webbed members:
1. **Increased Load Capacity**:
Double-webbed members significantly enhance the load-carrying capacity of the bridge. By doubling the number of panel girders, the bridge can support heavier loads, making it suitable for applications where heavy vehicles or equipment need to cross.
2. **Enhanced Stability**:
The additional width provided by double-webbed members increases the overall stability of the bridge. This is particularly important in situations where the bridge needs to withstand significant lateral forces, such as those caused by wind or uneven loading.
3. **Flexibility in Design**:
Double-webbed members offer greater flexibility in bridge design. Engineers can configure the bridge to meet specific load and span requirements by adjusting the number of double-webbed members used. This modular approach allows for quick adaptation to different site conditions and requirements.
4. **Improved Durability**:
The use of double-webbed members can improve the durability of the bridge by distributing the load more evenly across the structure. This reduces the stress on individual components, leading to a longer service life.
5. **Ease of Assembly**:
Despite their increased strength and capacity, double-webbed members maintain the ease of assembly characteristic of Bailey bridges. They can be quickly connected using standard components and tools, allowing for rapid deployment in emergency or temporary situations.
In summary, double-webbed members in Bailey bridges are essential for increasing load capacity, enhancing stability, providing design flexibility, improving durability, and maintaining ease of assembly. These features make Bailey bridges a versatile and reliable solution for a wide range of applications.
Specifications:
CB200 Truss Press Limited Table | |||||||||
NO. | Internal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | QS | SSR | DSR | TSR | QSR | ||
200 | Standard Truss Moment(kN.m) | 1034.3 | 2027.2 | 2978.8 | 3930.3 | 2165.4 | 4244.2 | 6236.4 | 8228.6 |
200 | Standard Truss Shear (kN) | 222.1 | 435.3 | 639.6 | 843.9 | 222.1 | 435.3 | 639.6 | 843.9 |
201 | High Bending Truss Moment(kN.m) | 1593.2 | 3122.8 | 4585.5 | 6054.3 | 3335.8 | 6538.2 | 9607.1 | 12676.1 |
202 | High Bending Truss Shear(kN) | 348 | 696 | 1044 | 1392 | 348 | 696 | 1044 | 1392 |
203 | Shear Force of Super High Shear Truss(kN) | 509.8 | 999.2 | 1468.2 | 1937.2 | 509.8 | 999.2 | 1468.2 | 1937.2 |
CB200 Table of Geometric Characteristics of Truss Bridge(Half Bridge) | ||||
Structure | Geometric Characteristics | |||
Geometric Characteristics | Chord Area(cm2) | Section Properties(cm3) | Moment of Inertia(cm4) | |
ss | SS | 25.48 | 5437 | 580174 |
SSR | 50.96 | 10875 | 1160348 | |
DS | DS | 50.96 | 10875 | 1160348 |
DSR1 | 76.44 | 16312 | 1740522 | |
DSR2 | 101.92 | 21750 | 2320696 | |
TS | TS | 76.44 | 16312 | 1740522 |
TSR2 | 127.4 | 27185 | 2900870 | |
TSR3 | 152.88 | 32625 | 3481044 | |
QS | QS | 101.92 | 21750 | 2320696 |
QSR3 | 178.36 | 38059 | 4061218 | |
QSR4 | 203.84 | 43500 | 4641392 |
CB321(100) Truss Press Limited Table | |||||||||
No. | Lnternal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Standard Truss Moment(kN.m) | 788.2 | 1576.4 | 2246.4 | 3265.4 | 1687.5 | 3375 | 4809.4 | 6750 |
321(100) | Standard Truss Shear (kN) | 245.2 | 490.5 | 698.9 | 490.5 | 245.2 | 490.5 | 698.9 | 490.5 |
321 (100) Table of geometric characteristics of truss bridge(Half bridge) | |||||||||
Type No. | Geometric Characteristics | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Section properties(cm3) | 3578.5 | 7157.1 | 10735.6 | 14817.9 | 7699.1 | 15398.3 | 23097.4 | 30641.7 |
321(100) | Moment of inertia(cm4) | 250497.2 | 500994.4 | 751491.6 | 2148588.8 | 577434.4 | 1154868.8 | 1732303.2 | 4596255.2 |
Advantage
Possessing the features of simple structure,
convenient transport, speedy erection
easy disassembling,
heavy loading capacity,
great stability and long fatigue life
being capable of an alternative span, loading capacity
![]() |
MOQ: | 1 Pcs |
Price: | USD 95-450 |
Standard Packaging: | Naked |
Delivery Period: | 8-10 work days |
Payment Method: | L/C,D/P,T/T |
Supply Capacity: | 60000ton/year |
Prefabricated Steel Portable Bridge/panel Steel Bridge
Double-webbed members in Bailey bridges serve several critical functions that enhance the bridge's load-carrying capacity and structural integrity. These members are essentially two panel girders connected together to form a stronger, double-width truss. Here are the main purposes of double-webbed members:
1. **Increased Load Capacity**:
Double-webbed members significantly enhance the load-carrying capacity of the bridge. By doubling the number of panel girders, the bridge can support heavier loads, making it suitable for applications where heavy vehicles or equipment need to cross.
2. **Enhanced Stability**:
The additional width provided by double-webbed members increases the overall stability of the bridge. This is particularly important in situations where the bridge needs to withstand significant lateral forces, such as those caused by wind or uneven loading.
3. **Flexibility in Design**:
Double-webbed members offer greater flexibility in bridge design. Engineers can configure the bridge to meet specific load and span requirements by adjusting the number of double-webbed members used. This modular approach allows for quick adaptation to different site conditions and requirements.
4. **Improved Durability**:
The use of double-webbed members can improve the durability of the bridge by distributing the load more evenly across the structure. This reduces the stress on individual components, leading to a longer service life.
5. **Ease of Assembly**:
Despite their increased strength and capacity, double-webbed members maintain the ease of assembly characteristic of Bailey bridges. They can be quickly connected using standard components and tools, allowing for rapid deployment in emergency or temporary situations.
In summary, double-webbed members in Bailey bridges are essential for increasing load capacity, enhancing stability, providing design flexibility, improving durability, and maintaining ease of assembly. These features make Bailey bridges a versatile and reliable solution for a wide range of applications.
Specifications:
CB200 Truss Press Limited Table | |||||||||
NO. | Internal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | QS | SSR | DSR | TSR | QSR | ||
200 | Standard Truss Moment(kN.m) | 1034.3 | 2027.2 | 2978.8 | 3930.3 | 2165.4 | 4244.2 | 6236.4 | 8228.6 |
200 | Standard Truss Shear (kN) | 222.1 | 435.3 | 639.6 | 843.9 | 222.1 | 435.3 | 639.6 | 843.9 |
201 | High Bending Truss Moment(kN.m) | 1593.2 | 3122.8 | 4585.5 | 6054.3 | 3335.8 | 6538.2 | 9607.1 | 12676.1 |
202 | High Bending Truss Shear(kN) | 348 | 696 | 1044 | 1392 | 348 | 696 | 1044 | 1392 |
203 | Shear Force of Super High Shear Truss(kN) | 509.8 | 999.2 | 1468.2 | 1937.2 | 509.8 | 999.2 | 1468.2 | 1937.2 |
CB200 Table of Geometric Characteristics of Truss Bridge(Half Bridge) | ||||
Structure | Geometric Characteristics | |||
Geometric Characteristics | Chord Area(cm2) | Section Properties(cm3) | Moment of Inertia(cm4) | |
ss | SS | 25.48 | 5437 | 580174 |
SSR | 50.96 | 10875 | 1160348 | |
DS | DS | 50.96 | 10875 | 1160348 |
DSR1 | 76.44 | 16312 | 1740522 | |
DSR2 | 101.92 | 21750 | 2320696 | |
TS | TS | 76.44 | 16312 | 1740522 |
TSR2 | 127.4 | 27185 | 2900870 | |
TSR3 | 152.88 | 32625 | 3481044 | |
QS | QS | 101.92 | 21750 | 2320696 |
QSR3 | 178.36 | 38059 | 4061218 | |
QSR4 | 203.84 | 43500 | 4641392 |
CB321(100) Truss Press Limited Table | |||||||||
No. | Lnternal Force | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Standard Truss Moment(kN.m) | 788.2 | 1576.4 | 2246.4 | 3265.4 | 1687.5 | 3375 | 4809.4 | 6750 |
321(100) | Standard Truss Shear (kN) | 245.2 | 490.5 | 698.9 | 490.5 | 245.2 | 490.5 | 698.9 | 490.5 |
321 (100) Table of geometric characteristics of truss bridge(Half bridge) | |||||||||
Type No. | Geometric Characteristics | Structure Form | |||||||
Not Reinforced Model | Reinforced Model | ||||||||
SS | DS | TS | DDR | SSR | DSR | TSR | DDR | ||
321(100) | Section properties(cm3) | 3578.5 | 7157.1 | 10735.6 | 14817.9 | 7699.1 | 15398.3 | 23097.4 | 30641.7 |
321(100) | Moment of inertia(cm4) | 250497.2 | 500994.4 | 751491.6 | 2148588.8 | 577434.4 | 1154868.8 | 1732303.2 | 4596255.2 |
Advantage
Possessing the features of simple structure,
convenient transport, speedy erection
easy disassembling,
heavy loading capacity,
great stability and long fatigue life
being capable of an alternative span, loading capacity